Short-hairpin RNA library: identification of therapeutic partners for gefitinib-resistant non-small cell lung cancer (Oncotarget, Jan 2015)

Makoto Sudo1, Seiichi Mori2, Vikas Madan1, Henry Yang1, Geraldine Leong1 and H. Phillip Koeffler1,3,4

1 Cancer Science Institute of Singapore, NUS, Singapore
2 Division of Cancer Genomics, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
3 Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
4 National University Cancer Institute, National University Hospital, Singapore

Somatic mutations of the epidermal growth factor receptor often cause resistance to therapy with tyrosine kinase inhibitor in non-small cell lung cancer (NSCLC). In this study, we aimed to identify partner drugs and pathways that can induce cell death in combination with gefitinib in NSCLC cells. We undertook a genome-wide RNAi screen to identify synthetic lethality with gefitinib in tyrosine kinase inhibitor resistant cells. The screening data were utilized in different approaches. Firstly, we identified PRKCSH as a candidate gene, silencing of which induces apoptosis of NSCLC cells treated with gefitinib. Next, in an in silico gene signature pathway analysis of shRNA library data, a strong correlation of genes involved in the CD27 signaling cascade was observed. We showed that the combination of dasatinib (NF-κB pathway inhibitor) with gefitinib synergistically inhibited the growth of NSCLC cells. Lastly, utilizing the Connectivity Map, thioridazine was identified as a top pharmaceutical perturbagen. In our experiments, it synergized with gefitinib to reduce p-Akt levels and to induce apoptosis in NSCLC cells. Taken together, a pooled short-hairpin library screen identified several potential pathways and drugs that can be therapeutic targets for gefitinib resistant NSCLC.

Three different approaches to identify a pathway or drug that can overcome gefitinib resistance of NSCLC.